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Analysis of Helicopter Rotor Blades.

Suwmmary:
The purpose of this report 1s to give all the/;;eory and
derivations necessary for the structural analysis of helicopter

rotor blades 1n steady forward flight. These data can easlly be

made &applicable to accelerated flight.

Description and Discussion of Materilal.

Four different types of blade attachment of the rotor hud
are considered:

a) Feathered, articulated blades equipped with
mechanical damping devices.

b) Feathered blades, center-hinged
plane of rotation (see-saw typej.

c¢) Single blaede (for type of attachments see
discussion, Part IV,

d) FPeathered blades with completely rigid
attachment.

The description of the report, which is divided into
8ix parts, is as follows:

rigid in the

Part I

This part contains materisl of general nature applicable
to 811 types of rotors:

1) Description of the assumptions used in this report
which ars applicable to all four rotor types.

2) General symbols, reference axes and definition of
the initial position of the blades.

3) Discussion of methods for solving the linear
differential equations with variable coefficlents
by use of approximations to functions. Demonstrations

—— e i e e e T
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Part II

of collocatlion, Ieast square, and CGalerkin?s methods,
are glven by a simple example.

Geometry of angular displacement of blades - change
of blade incidence due to blade angular displacement
about the alpha and delta hinges. The most general
cases are considered separately for articulated and
see~saw types. Working charts are also presented for

the case vhen 063 = 0 and the hinges are -mutually
perpendicular.

This part covers the theory and derivations necessary for

the structural analysis of articulated blades equipped with
mechanical damping devices:

1)

2)
3)

Dynamic loads acting on a blade elepent., Accelerations
imposed on a mass particle of a blade element are first
derived. The load acting on a blade element 1s ob-
tained by integrating over the total mass of the element.
The expressions derived are applicable to any type of
attachment. The assumption i1s made that both hinges
are 1n the same plane, their intersection colnciding
with the center of the rotor hub.

Gravity loads
Aerodynamic loads.
several sections:

This chapter is subdivided into

a) Discussien of the effect of blede deformation
on aerodynamic loads,

b) Angle of attack of a blade element on an
infinitely stiff blade; +the change of incidence
due to angular motlon of a blade about its hinges
and due to application of cyclic pitch control
(the variations of inctdence due to small periodic

osclllation of the blade in the plane of rotation
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c)

a)

e)

f)

g)

P,
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and due to second harmonic flapping are ne-~
glected. )

The distribution of induced velocity is assumed
to be triangular along fore and aft diameter of
the rotor.

The distributicn of the Z component of air load
along & stiff blade is given‘in terms of the
"flapping" coefficients and parsmeters A and iL.

The first two harmonics are considered.

The "flapping" coefficlents are determined, taking
into consideration the meéhanical damping of the
blede motion at the "flapping" hinge. Two sets of
oxpressians are given: In the first set the effect
of change of incidence due to motion of the blade
is combined with the effect of change due to cyclic
pitch control. The second set of expressions con-
siders these effects separately.

The distribution of Y components of air load along
a stiff blade. The load is given in terms of the
"flapping” coefficients, A and y. The first two
harmonics are considered. The expression for the
profile drag coefficient is taken from ref. (4)
and 1s CDO = 50 + Sl'er + &8, Gre, vhere O 1s
the angle of attack of the element under consideration.
Aerodynamic torque equation. This equation 1s ob-
tained by integrating from tip to root the moment
about the alpha hinge of the Y components of air
forces acting on the blade. The mean value of
torque 1s obtained by integrating the torque from

0 to 2w.

Extension of ref. (4) to account for the variation
of pitch due to angular motion of the blade and due
to cyclic pitch control; and also to account for

——




h)

the triangular distribution of induced

velocity through the rotor. Charts are
glven to help calculate quickly the axial
flow coefficient A.
"Hunting" coefficients. The coefficients
of Fourier series representing the harmonic
motion of the blade in the plane of rotation
are called "hunting® coefficients. These
coefficients are determined from the dynamic
equation of .motion of the blade in the plane
of rotation.
The effect of mechanical damping is considered
in writing these equations. The damping moment
is assumed to be proportional to the angular
velocity of the periodic oscillation of the blade

in the plane of rotation.

4} calculation of bending moments and deflection curve

in Z direction.

a)

b)

c)

a)

Loads on a blade element

Externel -~ Aerodynamic, gravity, inertia
Internal - Shears, moments, tension forces

Complete expressions for the external Z loads
are also given in this chapter.

The equations of equilibrium (motion) of an
element of flexible and stiff blades.
Derivation of the differential equation for

the deflection. Variable moment of inertia of
the blade is considered. As a first approxima-
tion the effect of blade flexibility on air
loads 1s neglected.

Solution of the differential equation for de-

flection by "collocation" method. A polynomial

is chosen to satisfy the boundeary conditions of

e e -
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- the blade,inoluding pechanical dampling momentb
at the npqgpping” hinge. A five point golution
is put into convenisnt tabular form. Explanations
are glven for the constant and harmonic parts.
First aod gecond harmenics 8re considered.

o) Step-by-steP tapular method of finding the
bending moments in the 2 direction. The complete
physical pilcture 1s given in deriving and ex-
plaining this method. The solution 1s set into
tapular form for ten points. Tables are given for
the constant and harmonlc parts. The first and
second hermonics &re considered. The effect of
blade flexiblllty on air losds 18 neglected.

5) Celculation of bending moments and deflection curve
! 4n the Y direction. :

a) Loads on & plade element. The effect of eccen=
tricity of the alpha hinge is taken into consider-

ation in evaluating the losd components acting on
a blede element.
Complete expressions for the external ¥ joads are
aiso given in this chapter.

b) The equations of equilibrium (motion) of &n elsment
are glven for flexible and stiff blades.

¢) Solution of the aifferential equation for de-
flection bY "collocation" method 1s glven. The
agsumed solutlion 18 of the sameé form &8s for
bending in the 2 direction. The tables derived for
the 2 direction bending &re applicable for the ¥
direction vending.

d) Step-by-ste? gabular method for ¢inding the bending
moments in the Y directlom. The theory and tables —
are the same &3 for the 2 directlon bending. )




-+

Torslon on the blades.

a) Torsion due to dynamic forces on stiff blades.
Expressions are derived for distributed and con-
centrated weights.

In deriving these expressions, it. was assumed that
the elastic center and the center of gravity of
any blade section lay on the zero 1lift chord line
of that section. Periodic torsion includes the
second hermonic.

b) Torsion due to aerodynamic forces.

¢) Torsion due to Z and Y deflections. Expressions
are derived to account for the torsional de-
formations due to bending of the blade in the Z
and Y directlons.

d) Potal torsion is calculated es the sum of torsions
found in sectlions a, b, and c.

The effect of blade flexure on the distribution of load
elong the blade in the 2 direction;y the "flapping"
coefficlents are corrected to account for the deflection
of the blade.

Sawple calculation.

A sample calculation of bending and deflection in the 2
direction is glven by both "collocation" and "tabular"
methods.

Calculations of all the necessary parameters, such as
the "flapping" coefficients, A\, alr and dynamic loads,
are also given. The c¢onstant and harmonic parts of the
moments and deflections are calculated and plotted. The
complete procedure {in all detail) is explained for all
calculetions.

Many practical points are outlined. For example: use of
faired curves for EI; adjustment of the alr loads to
satisfy the actual boundary conditions of the blade,
wvhich may not be quite satisfied due to approximations

e A ene—— —— - . — s o ——— P,
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Part III

involved in deriving our expressions for the
"flapping” coefficlentz; slow convergence of
solutions of the deflection differentisal equatlons,
by "collocation" method, in cases when the slope of
the deflection curve 18 known &t xr = 0.

Discussion of Y direction eir loads, bending moments
and deflections, 1s also given in this chapter.

Center-hinged blades rigid in the plane of rotation

(see-saw type) are considered in this part.

The blades are

assumed to have a " § " hirge and bullt-in coning.

1)

2)

3)

k)

5)

W e s

"Flapping " coefflclents are determined in a manner
simllar to the one used for the articulated dblades by
writing the equation of motlon about the flapping

hinge.
Solution for A 3 1t 1s assumed for all practical
purposes that sufficient accuracy 1s obtalned 1if A

18 determined by the use of the charts glven in

Part II for articulated blades.

"Munting" coefficlents are found in terps of “flapping"
coefficients, built-in coning and 5'3.

Calculation of the Z snd Y direction bending moments
and deflections for the "see-saw" type blades. Only
the "tabuler" method 1s glven, since the "collocation"
method becomes not practical because of the boundary
conditions. All tables prepared in Part II are

applicable.
Torsion and the effect of flexiblllty. All expressions

derived in Part II are applicable for the "see-saw"
type.
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Part IV

Single blade rotors are consldered, with five types of

blede attachment to the hubs

1) Fully articulated with counterwelght rigidly attached
to hub (figm®~-Ip. IX~-7 ). This case 1s treated in
every detail as a speclsl case of the fully articu-
lated multl-bladed rotors of Part II.

2) Fully articulated with counterweight rigldly attached
to the blade (fig I¥-! p.I¥-7). This case is also
treated as a specisl case of the fully articulated,
milti-bladed, rotors of Part II, except that some
of the equatlions therein must be modified to account
for the inertia of the counterweight. These modifis.
cations are glven in detail. The alr loads on the
countervelght are neglected.

3) Single hinge attachment with counterwelght attached
to hub, (figIw-1 p.1x-7). Thls case is treated in
a manner similar to that for the "see-saw" type blades
of Part III. Deviations therefrom are noted and given
in detail.

4) Single hinge attachment with counterwelght rigidly
attached to the blade (fig -/ p. -7 ). This case
is treated the same as case 3, except that the modis
flcatlions to account for the lnertia of the counter-
welght are indluded.

5) Rigild blade attachment. This is in every detsil govered
by the anslysis of Part V for multi-bladed rigid motors,

Part V

Rotors with the blades rigidly attached to the hub. "Buillt-
in" coning and lag angles are considered. The solution for A
of Part II is considered adequate. The equations and theory of
Part II are generally applicable, upon substitution of the
proper flapping and hunting coefficlents, which are, of couise,
mown at the outsst. The methed recommended for finding the

I
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Part I
T. General Assumptions

The assumptions used in this report, which sare
applicable to all rotor types investligated, are as
follows:

A.l. The approximated distribution of induced veloclty
along & blade 1s glven by expression

(r-1) v, = Vi (1 + x, cos 9, )

8
Ref. 1,2
A.2. The magnitude of mean induced velocity-?i is
glven by
(r-z) ¥, !
= 2r R A
Ref. 3

A.3., The radisl component of the resultant alr
velocity at a blade element may be neglected,

Ref. 2

A4, It is assumed that 1n a steady flight, any
satisfactory design will avoild stalling of the
' tips.

A5, It will be assumed that compressibility shock
wave on the advancing blades 1s avolded. The

1imiting maximum speed given by Balley 1s
1!

(r-3) (V'A)m‘x =573 ¢ 1

Ref. 4
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A.6. The calculation of the tip loss factor, B, ia
based on the Prandt] theory (ref.$ ana ¢ )
modified to account for the induced losses due

to the nhecessarily large deviation from a constant

induced velocity in a Practical design., The

additional correction was calculated on the basis

of several existing designs by Quentin Wald ang
bresented in the Sikorsky Report, rer. 7

2
(z-4)  B=1 ‘I"? -6 (=) Joe,

where (xr)t is x, vwhere the taper of the blade

begins,
This expression is only valid for

(xr)t > -5
for (xr)t £ .5, .6 (xr)t is replaced by .3 ana

' the expression for the tip loss factor becomes
‘ for (xr)t £ .5

(t-4a) B -1 -/ 25, ( % +.3)

A.7. The slope of the blade section 1lift coefficient
is s straight line,

Ref., 2

A.8. a11 harmonics above the second one are neglected

Ref, %

 og——h s
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A.9,

A.10,

A.11,

A.15,

A.16

The reversed flow region is treated in a manner
similar to ref, 2 » 1.8., the tralling edge
of each blade element in that region is treated
&8s the leading edge and vice versa, the effect of
stall disregarded.

In calculating the inflow cosfficient and
harmonic coefficlents of the blade motion, the
blade is Infinitely stirr.

In calculating the inflov coefficient and har-
monic coefficients of the blade motion, the blade
chord is constant, equal to the mean chord de-
fined as

1
C = 4.£ °x,, 3 dx,
Ref. 8

For all calculations except when it is specified,
all rotor hinges intersect at the center of the
hub 0',

The .root chord is assumed to be extended to the
center of the hub,

All angles except azimuth Oz are small, so that
a

]

sin @ tan 0 = @

cos @ 1.0

[

The blade drag contributes a negligible amount
to the thrust of both the blade element and the
rotor.

As far 8s the flov through the rotor is concerned,
the number of blades is infinite, Among other
things, this implies that the inertia of the aipr
18 negligible,

g N
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The Reversed Flow Regilon

In the region of reversed flow, the air loads are negative

relative to the reglon of straight flow, and the equations for

the airloads are discontinuous at X, =~ & sin Oz . Unless
a

discontinuity can be eliminated, the bending moments and

deflections of the blades must be found separately at each

azimuth angle. This eliminates the possibility of finding

the harmonic parts of the deflections and bending moments,
whfch prevents solving the second approximation

for the effect of blade flexibility on the air loads, and
even prevents accounting for the lnertia loads due to
deflections of the blade (the term Rmz ~, equation x-93).

In this case the step~by-step tabular solution for the bending
moments 1s recommended since 1t appears to be shorter than
the "collocation" method.

Mathematical means of avoliding this impasse may exist,
but it is felt that the problem is not of sufficient importance
to warrant investigations of these means, considering their
complexities.

In any case, it 1s well to bear in mind these further

limitations of the theory presented herein, when it is applied

to a blade in the reversed flow region,

T9, < 2r . Although
a
not strictly justifiable, 1t 1s thought that a good compromise

solution for the bending moments of a blade in reversed flow
might be obtained by considering that the air loads inboard
of X, = i are zero at any azimuth angle. This assumption
at least would permit an approximate calculation of the effect
of the inertia loads due to bending (see pp.m-é tormr-/f ).
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I. Coordinate Axes

Z,
|
X’ / !o’
]
I
) |
Y |
1
VO s s
X .6 b
Kot s
Yo
FI1G. I-)

The xa, Yé and Z8 8xes are fixed to aircr

Xgaxis 1s horizontal when the aircrart ig
The X', Y’ and z' 8xes are also fixed to
have the origin bassing through

z! axis coincides with the rotor shaft,

\Z” AXIS OF Rorarion

LoTok DISK

DIRECTION OF porron

aft as shown above,

on the ground,

the airerart but
the center of the rotor hub,

”~ )
L
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Z, AXIS OF RorRTION

LERLO LIFT CHORD

an Y, IWITIAL POSITION OF
EXTEMOED Roor cHorlD

¢. The X, ¥ and Z axes are rotating axes with their origin,O,
at the drag hinge. The X axis is colncident with the pitch
chenging axis (feathering axis) of the blade when the blade is
assumed to be infinitely stiff. The Y axis is perpendicular to




|

X axis and coincides with extended gero lift root chord
of the blade (extended to "0")when the blade is in its

initisl position.

The Z axis is perpendicular to both

the Y and X axes, as shown.

II. Initial position of X Y Z axes. t\u}
3 .
X
Y
\ 8
! 5 ‘) ~
Y N y 9
v — y
o’ \esl
Yy o
i ~— - \‘-
. 2 v
‘-.) 95° Y 0|,|_
I~
\SOF — % -
/ ""--..‘{os(_rn HINGE R bj
- I
RLPHA HINGE \
\
PN, [ -
X
‘l ww‘
! X, X FlG.I-3. THREE - VIEW ©F
' zl Z JRIITIRL BLROE PoSITIoOA
i
: \
\ &
14 \\\
A 13 y'
P T~
2\ TS~ DELTA HIMGE
._.(_l-\ y
5
) \
. \"- HLPHA HINLGE
]
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The initisl position of the blade is defined as follows:
The X Y plane is parallel to 'y plane, the projection of

X axls on X'Y' plane lies along x' axis.

Linear Dimensions.

Distence from the origin "0"
(drag hinge) to a blade

element
Chordwise distance of a particle

"Rational" "Classical"

on & blade from the pitch changing

axis (X axis)
Distance of & particle from the X Y

plane

Distance of & blade element from Z'
&xls when the blade is in the
initisl position.

Blade radius--Distance of the tip
of the blade from 2Z' axis when
the blade is in the initisl
position.

Delta 1link length is equal to o'of

(Fig z-3)
Alphs link length is equal to ofo
(Fig z-3 )
Chord of a blade element

Mean chord
Extended root chord

Extended tip chord

Blade structural deflection parallel

to X Y Z axes respectively

IV. Angular Dimensions.

Total anzslar displacement about

the X

axis of the X Y plane from 1ts

initial position~-Total blade incidence

8t the drag hinge

| S—




Total angular displacement about
the Y axis of the Y X plane
from its initial position--
Flapping angle (4]

Total angular displacement about the
Z axis of 2 X plane from its ini-
tial position. ]

Angulsr displgcement sbout the Z axis
of the Z X plane from its inltial
position due to the rotation of
the drive shaft (~

Angular displacement about the Z axis
of the 2 X plane from its initial
position due to the motion about
drag hinge (¢

Absolute angle of attack of a blade
element ]

Induced angle of attack of a blade

element ]
Total twist of the blade--between

the extended root chord and the

tip (¢

Blade incidence at the drag hinge

due to collective pitch control oxo

Maximum (minirmm) blade incidence
at the drag hinge due to cyclic
pitch control

xc
Control phase azimuth angle

xc

O O

Effective blade incidence oxoe

Angle of incidence of a particle on
a blade element (]

Angular displacement about the x'
axis of the X'Y' plane from its
initial position--Roll o_1
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Angulsr displacement a&bout the
Y' axis of the X'Y' plane from
its initial position-~Pitch

Angular displacement about the z'
axis of Z'X' plane from its
initial position--Yaw

Anguler dimensions of Delta
(Flapping) axis and Alpha
(Drag) axis respectively as

shown in Fig.(z-3)

Measured in Z X plane from X
Mesgsured in Z Y plane from 2
Measured in X Y plane from Y

Linear Velocities.

Resultant air velocity at Rotor
Absolute velocity of aircraft

Resultant velocity &t a blade

element

Components of velocity at a blade
element due to motion of the blade
Component of Vg parsllel to X'y'z'

axes respectively

Components of VA parallel to the
X'Y'Z' axes respectively

Components of V parallel to the
XY Z axes respectively

Induced velocity at any point of the

Rotor

Mean induced velocity of Rotor

Y"Rational" "Classical"
System System
Gyl oC
Gzl
Slr ‘{1 S]_’(l
2s &2 82,0
83: K} 83: &5
Vh v
VA v
v
i.v 3}9 2
V.

Rx' VRy' VRz'

Vax' Vay' Vag!

Vi, V&, Vé
V:L v + vl
Vi v
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Moments about axes parallel 4o

"Rational" "Classical®
sttem sttem
the XY 2 axes respectively M_, .M M
x1 oMy o8y
XI. Series Expansions,
Flapping Angle; l
i
it 1t - - - - -
Rational Oy =8, 8; cos °z b1 sin Oz 8, ccs 202
a a a
- b, 8131 29
2 z,

1 1 - - - - by
Classical B = a, a; cos ¥ b1 sin ¥ &5 cos 2v¥

- b2 sin v

Feathering Angle:

1 n _ -
Rational Qx e c0 ¢y cos Qza

- d1 sin Oz -cC

cos 2@ -
e 2 z

a
- d, sin 20
2 Zg
"Classical ¢ = 8, - A

cos ¥ - B.sin ¥ - 4 cos 2¥ -
1 1 2

- 32 sin 2¥

La le:

1 1n — - - - -
Rational Ozb = e, €; cos Oz fl sln Oz e, cos 2oz
a a a
- £, sin 20
2 z,

"Classical” ¥ = E, - E, cos ¥ - Fy sin v - E, cos 2v

- F2 sin 2%

B
P
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" Classical“

X1I. coefficients npational”
- systen gystem
= G 2 =
Rotor 1ift L=0C,T R }:2 AN Ly=0p, T R0
21 2 - 2
Rotor drag D =CD1rR -2-va D, Cp T R —-p\l2
21 2 2
Rotor latersl Fry' ~ o TR 3 ov,2 T=0gT I
force
Rotor thrust T = Cp P bf £ & 7 = Cp 1::_0'.2 .
8
Vaz' +-; v sinL- XY
Mean inflo¥ N o g A= L2
factor R Qg AR
Mean induced -
Vi v
inflow fac- }\1 - ——— —
ror R 9, nR
a
mip speed Vax! v cos L
ratio b= p=—
R 0‘ nR
a
go1idity retio O = c==
7R TR
Rotor torgue = M1 = CQ P 03 T R5 Q=FC p_nz T R
a

Rotor rolling
mement = 1 =0y T
Mer =78 2

P
— e emtemtmas
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"Rational"
sttem

Rotor pitching
1 2
moment = y =C_ 7 R3 = pV
My m 2 P A

Ratio of V com-

ponents to I'Oo~
tational tip u, u
speed

v U

Z

Ratio of dis-

tance of an

element from
prigin,0, to
blade radius

XIII. Miscellaneous

Number of blades b
Tip loss factor B
Moment of inertla

about Delta hinge IF

Moment of inertia
about Alpha hinge ID

Moment of inertia

abput Y axis IY
Moment of inertia
sbout Z s&xis Iz

Blade sections
moments of inertls
about their axes
parallel to Y and

7 axes respectively Iyi) Izi

nglassical”

sttem

M=C, T R’ % pV2

UgsUpoUp
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nrational”
sttem

Mass constent of
rotor blade ¢ pa Ru

(Flapping ninge) Jp =
1
F

Mass constant of
rotor blade *
(arag hinge)

gjope of 1ift
curve per
radian

Mean profile
drag coef-
ficient

subscript used in
connection
vith a flex-
iple blade ( )f

Mass per foot
jength of
blade

Weight per f£oot
jength of the

blade

Total veight of
each blade

uopassical” .

sttem

cpsa 'R4
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Pumerical Solucion of Line&r Differential Eguations of

Higher Qrder
de geflections jnvolve the

he celculation of ble

since b
jgl equetions o

solution of linear gifferent
the outline of several known methods for S0

equatlon js given in the following.

£ fourth order,
i1ving thet type of

igered.

Three me thods 1i.sled pelow are_cons

Collocation
Least squere

Galerkin
The type of differential equation considered js of the
form
n n-1
d'z a Z az
(1—6) Gn(X) ? + Gn_l(X) E;—n::l 4 e e e Gl(X) = + GO(X)Z =T (X)
n

or in a more prief form

(£-62) g(p)z - £ (x) =0

where D Eé;

1
.. 0GP F Gy

et n-
(z-6b) a(p) = G2 + Gn-1P

gand x is an jndependent veriable.
em consists in finding the unique solution

a= XxX==D -
to be glven by & polynomial

The probl
in one interval of

The solution can be assumed

which cé&n be written in & form

z{x) = Xo(x) + 2 Xj(x) e

(z-7) ]

L]

- ,

e e g £

1

T o ] .




!
!

where Xo(x) and Xj(x) are functions of x which are
chosen in such & way as to satisfy as many boundary conditions

for 2Z(x) and its derivatives as possible, inherently, i.e.,
independently of the value: of the coefficients a, .
Sometimes it is not possible to satisfy all the boundary
conditions without introducing difficulties in the subsequent
integrations. In such cases it is better not to satisfy s
boundary condition then to satisfy a false one.
The constants &,
solution 2Z(x)
possible.

wmust be such as to get the assumed

to fit the actual one 2z as closely as

The main difference between methods of solving
the equation is the way the constants aj are determined.
It i= obvious that for a given differentisl equation

and boundary conditions there may be a number of polynomials
which can be chosen. Some of them may satisfy all the

conditions, others may satisfy them only partially, but may
be preferred because of thelr simplicity in integrating.

Once a polynomial is chosen, the problem is then reduced
to determination of constants Bj .

If the assumed solution happened to be the exact solution
of the given differential equation we would have

(z-8) G(p) z(x) - £(x) =0

but since it is only an approximate solution we have

{r-8a)

G(p) z(x) - £(x) # 0= € (x)

where & (x)

is a function obtained when 2Z(x) is substituted
for =z

in the left hand side of the differential equation (I-6 ),
The above equation can also be written in the form

S
(1-85) &(x) = >j3 1 Ay(x) 8y + Xy(x) - £(x)
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(x) for

Aj(x) = 6(p) Xy
ow can be outlined

where

The three methods I
Collocation

The constants &8s

the differential equation exactly at 3

Xy X« v X5 s

S
s Aj(xi) aj + Xo(xi) = f(xi)
j=1

for 1 =1, 2, 3 & o S .

To illustrate the method, consider,

cantilever besa

W */in

T

The equatio
root will be

n for the moment &t each po

j-0,1,2.°.

are chosen so thab z(x)
selected points

j.e., & (x) =0 8t tnose selected points.

(r-8¢)

oS

gatisfies

(r-9)

for example, 8 simple

m uniformly 1o0aded and constant EI

FlG. I-4

int distant T from the

2
a7z W 2
EIl —p5 = (e - 7) (x-10)
day 2
if we let I =x sand e“w =1 (r-1)
e BT
the equation becomes
2
&z _ (3 - %)? (£ -100)

&

. g

,’.
L




With the boundary conditions

dz _ _ _

2 =52 =0 et x=0 (r-/2)
2 3

§—§=dz=0 at x = 1 (I—/:Z.a-)
ax dx

The exact solution of the equation 1s

12 13 Iu
Z=—2--—3-+I2- (I’/s)

Assume the solution to be given by & polynomial

2 2 2 2
(= 2x+(1gr-) sin%x]i-az[fz--%.;.(%) sing_”i]

(z-14) 2(x) =8 -7

sin (48~ ™=

2 2
v oy U sy T P

[t}
(@]

(r-14a) X (x)

2 2 s
- x.(x) = & - — 22— 12 (B
- 146) XD = 7 Gy T e 2" sin L2

Retaining pirst three terms we have S =3 and

2
(r-14¢) 2(x) =8, By - 5
2 2
vay Br -G+ (£) sin g %)

' for x =0, z(x) =0

2 2 2
—g-}-c--#(;zr-) sin%x] + 8, [%-%4-(-%) sin%”—x]




(7-14d) Z(x) =a; [x-%+-§-cos%x] + 8, [x—%-p%cos%’ix]

+ 8y [x '921?+'9?F cos%'rrx]

for x =0, 2(x) =0

- (T-14 &) 2(x) = a8y (1- sin%x) + 8, {1 +sm%';x) + 8y (1 - ain%’fx) 5

for x=1,.Z.(x)-0

] . (z-14£) "Z°(x)--_algcos%x-aa%cos%x-aB%cos%’fx

for x =1, Z(x) =0

Substituting Z(x) into the differential equation,
we have

(r-+5) 8y (1 - sinz x) +a, (1 - sin%'r-x) + 8y (1 - sin%ﬂx)

- {1 - x)2 = €(x)

Chosing three points where € (x) =0 » ve have at points |
(chosen at random)

[ Xy =0 X, = 1/2 x5 = 2/3
" (I-/éa,) 81+B.2+83-1=0 (x-o)
I to.
! (b) .293 &y + 1.707 &5 + .293 85 - .25 =0  (x = 1/2) '
i () .134 8, + 1.866 a, + 8z - 1109 = 0 (x = 2/3)




Solving, we have

8y = .9963 .
ay = ~ 030k
8.3 = .0341

Therefore, the equation for deflection becomes:

2 2 2
z(x) = .9963 (& - 2= + (5) stn 5 x) - L0304 (B - %}T

2 2 2
+ (%) sin%r- x] + .o34 [ - %73; + (9‘?7-;) sin%’l x]

Calculating at several points and comparing with the exact

solution, we have,

x Z collooation z exact .
0 0 0
.25 . 02386 . 0264
.50 .089 . 0887
.75 .1801 1665
1.0 .2716 .25

If more terms are taken, the approximation will be even

closer than above.

Leest Square

In this methed each constant, a, , is determined in such
e way that the mean squared error é;a , in the interval from

a to b 1n the differential equation is minimum, or




4

L

(z-/5) € =8y (1 - sin z x)

(r-79)

e

Using the same example as in collocation

2
[s it 1 2
I-/0a = (1 - x)
( ) =
ve had,

T
+ & (1. - sin g— x)

+ 8y (1-sin%}'—x)- (1-x)°

The least square equations &are

1
ufé(l-sin-gg-x)dx',
o

or, evaluating these integrals

.226 a, + .235 8y + .291 83 - .2133 = 0

(z-20) .235 &) + 1.245 8, + .802 a5 - .2118 = 0
.291 &) + .802 &y + 1.358 a3 - .2631
Solving
8y = 95,
8, = -.0339

83 = -,00268

—_— e 5 —_ ——— -

1 1
Onfé(l-sing»x) ax"= [ € (1-sing"lx)dx
o o

[




Galerkin's wetnog
=—=22kin 5 Methog

In Galerkin 's m

#t

e bt
S
N

(o

Such g W8y ag ¢

(z-2/)

ethod the constants,
o satisry the conditio

J.(x)dx=0
a

j » 8&re detez-mined in
n

-/4 e In &energ], any
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